Overexpression of AtCSP4 affects late stages of embryo development in Arabidopsis

نویسندگان

  • Yongil Yang
  • Dale T. Karlson
چکیده

Eukaryotic cold shock domain proteins are nucleic acid-binding proteins that are involved in transcription, translation via RNA chaperone activity, RNA editing, and DNA repair during tissue developmental processes and stress responses. Cold shock domain proteins have been functionally implicated in important developmental transitions, including embryogenesis, in both animals and plants. Arabidopsis thaliana cold shock domain protein 4 (AtCSP4) contains a well conserved cold shock domain (CSD) and glycine-rich motifs interspersed by two retroviral-like CCHC zinc fingers. AtCSP4 is expressed in all tissues but accumulates in reproductive tissues and those undergoing cell divisions. Overexpression of AtCSP4 reduces silique length and induces embryo lethality. Interestingly, a T-DNA insertion atcsp4 mutant does not exhibit any morphological abnormalities, suggesting that the related AtCSP2 gene is functionally redundant with AtCSP4. During silique development, AtCSP4 overexpression induced early browning and shrunken seed formation beginning with the late heart embryo stage. A 50% segregation ratio of the defective seed phenotype was consistent with the phenotype of endosperm development gene mutants. Transcripts of FUS3 and LEC1 genes, which regulate early embryo formation, were not altered in the AtCSP4 overexpression lines. On the other hand, MEA and FIS2 transcripts, which are involved in endosperm development, were affected by AtCSP4 overexpression. Additionally, AtCSP4 overexpression resulted in up-regulation of several MADS-box genes (AP1, CAL, AG, and SHP2) during early stages of silique development. Collectively, these data suggest that AtCSP4 plays an important role during the late stages of silique development by affecting the expression of several development-related genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arabidopsis cold shock domain proteins: relationships to floral and silique development

Cold shock domain proteins (CSPs) are highly conserved from bacteria to higher plants and animals. Bacterial cold shock proteins function as RNA chaperones by destabilizing RNA secondary structures and promoting translation as an adaptative mechanism to low temperature stress. In animals, cold shock domain proteins exhibit broad functions related to growth and development. In order to understan...

متن کامل

Improved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1

A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...

متن کامل

Histone deacetylase AtHDA7 is required for female gametophyte and embryo development in Arabidopsis.

Histone modifications are involved in the regulation of many processes in eukaryotic development. In this work, we provide evidence that AtHDA7, a HISTONE DEACETYLASE (HDAC) of the Reduced Potassium Dependency3 (RPD3) superfamily, is crucial for female gametophyte development and embryogenesis in Arabidopsis (Arabidopsis thaliana). Silencing of AtHDA7 causes degeneration of micropylar nuclei at...

متن کامل

Histone Deacetylase AtHDA7 Is Required for Female Gametophyte and Embryo Development in Arabidopsis1[C][W][OPEN]

Histone modifications are involved in the regulation of many processes in eukaryotic development. In this work, we provide evidence that AtHDA7, a HISTONE DEACETYLASE (HDAC) of the Reduced Potassium Dependency3 (RPD3) superfamily, is crucial for female gametophyte development and embryogenesis in Arabidopsis (Arabidopsis thaliana). Silencing of AtHDA7 causes degeneration of micropylar nuclei at...

متن کامل

cot1: a regulator of Arabidopsis trichome initiation.

In Arabidopsis, the timing and spatial arrangement of trichome initiation is tightly regulated and requires the activity of the GLABROUS1 (GL1) gene. The COTYLEDON TRICHOME 1 (COT1) gene affects trichome initiation during late stages of leaf development and is described in this article. In the wild-type background, cot1 has no observable effect on trichome initiation. GL1 overexpression in wild...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2011